Skip to content

2. Variables and Collections

# Python has a print function
print("I'm Python. Nice to meet you!")  # => I'm Python. Nice to meet you!

# By default the print function also prints out a newline at the end.
# Use the optional argument end to change the end string.
print("Hello, World", end="!")  # => Hello, World!

# Simple way to get input data from console
input_string_var = input("Enter some data: ") # Returns the data as a string

# There are no declarations, only assignments.
# Convention in naming variables is snake_case style
some_var = 5
some_var  # => 5

# Accessing a previously unassigned variable is an exception.
# See Control Flow to learn more about exception handling.
some_unknown_var  # Raises a NameError

# if can be used as an expression
# Equivalent of C's '?:' ternary operator
"yay!" if 0 > 1 else "nay!"  # => "nay!"

# Lists store sequences
li = []
# You can start with a prefilled list
other_li = [4, 5, 6]

# Add stuff to the end of a list with append
li.append(1)    # li is now [1]
li.append(2)    # li is now [1, 2]
li.append(4)    # li is now [1, 2, 4]
li.append(3)    # li is now [1, 2, 4, 3]
# Remove from the end with pop
li.pop()        # => 3 and li is now [1, 2, 4]
# Let's put it back
li.append(3)    # li is now [1, 2, 4, 3] again.

# Access a list like you would any array
li[0]   # => 1
# Look at the last element
li[-1]  # => 3

# Looking out of bounds is an IndexError
li[4]  # Raises an IndexError

# You can look at ranges with slice syntax.
# The start index is included, the end index is not
# (It's a closed/open range for you mathy types.)
li[1:3]   # Return list from index 1 to 3 => [2, 4]
li[2:]    # Return list starting from index 2 => [4, 3]
li[:3]    # Return list from beginning until index 3  => [1, 2, 4]
li[::2]   # Return list selecting elements with a step size of 2 => [1, 4]
li[::-1]  # Return list in reverse order => [3, 4, 2, 1]
# Use any combination of these to make advanced slices
# li[start:end:step]

# Make a one layer deep copy using slices
li2 = li[:]  # => li2 = [1, 2, 4, 3] but (li2 is li) will result in false.

# Remove arbitrary elements from a list with "del"
del li[2]  # li is now [1, 2, 3]

# Remove first occurrence of a value
li.remove(2)  # li is now [1, 3]
li.remove(2)  # Raises a ValueError as 2 is not in the list

# Insert an element at a specific index
li.insert(1, 2)  # li is now [1, 2, 3] again

# Get the index of the first item found matching the argument
li.index(2)  # => 1
li.index(4)  # Raises a ValueError as 4 is not in the list

# You can add lists
# Note: values for li and for other_li are not modified.
li + other_li  # => [1, 2, 3, 4, 5, 6]

# Concatenate lists with "extend()"
li.extend(other_li)  # Now li is [1, 2, 3, 4, 5, 6]

# Check for existence in a list with "in"
1 in li  # => True

# Examine the length with "len()"
len(li)  # => 6


# Tuples are like lists but are immutable.
tup = (1, 2, 3)
tup[0]      # => 1
tup[0] = 3  # Raises a TypeError

# Note that a tuple of length one has to have a comma after the last element but
# tuples of other lengths, even zero, do not.
type((1))   # => <class 'int'>
type((1,))  # => <class 'tuple'>
type(())    # => <class 'tuple'>

# You can do most of the list operations on tuples too
len(tup)         # => 3
tup + (4, 5, 6)  # => (1, 2, 3, 4, 5, 6)
tup[:2]          # => (1, 2)
2 in tup         # => True

# You can unpack tuples (or lists) into variables
a, b, c = (1, 2, 3)  # a is now 1, b is now 2 and c is now 3
# You can also do extended unpacking
a, *b, c = (1, 2, 3, 4)  # a is now 1, b is now [2, 3] and c is now 4
# Tuples are created by default if you leave out the parentheses
d, e, f = 4, 5, 6  # tuple 4, 5, 6 is unpacked into variables d, e and f
# respectively such that d = 4, e = 5 and f = 6
# Now look how easy it is to swap two values
e, d = d, e  # d is now 5 and e is now 4


# Dictionaries store mappings from keys to values
empty_dict = {}
# Here is a prefilled dictionary
filled_dict = {"one": 1, "two": 2, "three": 3}

# Note keys for dictionaries have to be immutable types. This is to ensure that
# the key can be converted to a constant hash value for quick look-ups.
# Immutable types include ints, floats, strings, tuples.
invalid_dict = {[1,2,3]: "123"}  # => Yield a TypeError: unhashable type: 'list'
valid_dict = {(1,2,3):[1,2,3]}   # Values can be of any type, however.

# Look up values with []
filled_dict["one"]  # => 1

# Get all keys as an iterable with "keys()". We need to wrap the call in list()
# to turn it into a list. We'll talk about those later.  Note - for Python
# versions <3.7, dictionary key ordering is not guaranteed. Your results might
# not match the example below exactly. However, as of Python 3.7, dictionary
# items maintain the order at which they are inserted into the dictionary.
list(filled_dict.keys())  # => ["three", "two", "one"] in Python <3.7
list(filled_dict.keys())  # => ["one", "two", "three"] in Python 3.7+


# Get all values as an iterable with "values()". Once again we need to wrap it
# in list() to get it out of the iterable. Note - Same as above regarding key
# ordering.
list(filled_dict.values())  # => [3, 2, 1]  in Python <3.7
list(filled_dict.values())  # => [1, 2, 3] in Python 3.7+

# Check for existence of keys in a dictionary with "in"
"one" in filled_dict  # => True
1 in filled_dict      # => False

# Looking up a non-existing key is a KeyError
filled_dict["four"]  # KeyError

# Use "get()" method to avoid the KeyError
filled_dict.get("one")      # => 1
filled_dict.get("four")     # => None
# The get method supports a default argument when the value is missing
filled_dict.get("one", 4)   # => 1
filled_dict.get("four", 4)  # => 4

# "setdefault()" inserts into a dictionary only if the given key isn't present
filled_dict.setdefault("five", 5)  # filled_dict["five"] is set to 5
filled_dict.setdefault("five", 6)  # filled_dict["five"] is still 5

# Adding to a dictionary
filled_dict.update({"four":4})  # => {"one": 1, "two": 2, "three": 3, "four": 4}
filled_dict["four"] = 4         # another way to add to dict

# Remove keys from a dictionary with del
del filled_dict["one"]  # Removes the key "one" from filled dict

# From Python 3.5 you can also use the additional unpacking options
{'a': 1, **{'b': 2}}  # => {'a': 1, 'b': 2}
{'a': 1, **{'a': 2}}  # => {'a': 2}



# Sets store ... well sets
empty_set = set()
# Initialize a set with a bunch of values.
some_set = {1, 1, 2, 2, 3, 4}  # some_set is now {1, 2, 3, 4}

# Similar to keys of a dictionary, elements of a set have to be immutable.
invalid_set = {[1], 1}  # => Raises a TypeError: unhashable type: 'list'
valid_set = {(1,), 1}

# Add one more item to the set
filled_set = some_set
filled_set.add(5)  # filled_set is now {1, 2, 3, 4, 5}
# Sets do not have duplicate elements
filled_set.add(5)  # it remains as before {1, 2, 3, 4, 5}

# Do set intersection with &
other_set = {3, 4, 5, 6}
filled_set & other_set  # => {3, 4, 5}

# Do set union with |
filled_set | other_set  # => {1, 2, 3, 4, 5, 6}

# Do set difference with -
{1, 2, 3, 4} - {2, 3, 5}  # => {1, 4}

# Do set symmetric difference with ^
{1, 2, 3, 4} ^ {2, 3, 5}  # => {1, 4, 5}

# Check if set on the left is a superset of set on the right
{1, 2} >= {1, 2, 3} # => False

# Check if set on the left is a subset of set on the right
{1, 2} <= {1, 2, 3} # => True

# Check for existence in a set with in
2 in filled_set   # => True
10 in filled_set  # => False

# Make a one layer deep copy
filled_set = some_set.copy()  # filled_set is {1, 2, 3, 4, 5}
filled_set is some_set        # => False